意甲联赛下注 - 首页Welcome(yb3548.cn)是亚洲优质游戏品牌,综合各种在线游戏于一站式的大型游戏平台,经营多年一直为大家提供安全稳定的游戏环境,意甲联赛下注 - 首页Welcome值得信赖,期待广大游戏爱好者前来体验,意甲联赛下注 - 首页Welcome将把最好的游戏体验带给大家!

<span id="txjt1"></span>
<strike id="txjt1"><i id="txjt1"><del id="txjt1"></del></i></strike>
<strike id="txjt1"><i id="txjt1"><cite id="txjt1"></cite></i></strike>
<strike id="txjt1"><i id="txjt1"><del id="txjt1"></del></i></strike><strike id="txjt1"></strike>
<span id="txjt1"><dl id="txjt1"></dl></span>
<strike id="txjt1"><dl id="txjt1"><cite id="txjt1"></cite></dl></strike>
<span id="txjt1"></span>
<ruby id="txjt1"><i id="txjt1"></i></ruby>
<strike id="txjt1"></strike>
<strike id="txjt1"></strike><strike id="txjt1"></strike><ruby id="txjt1"><i id="txjt1"></i></ruby><span id="txjt1"><dl id="txjt1"></dl></span>
<span id="txjt1"><dl id="txjt1"><del id="txjt1"></del></dl></span>
<span id="txjt1"><dl id="txjt1"><strike id="txjt1"></strike></dl></span><span id="txjt1"><video id="txjt1"><del id="txjt1"></del></video></span>
<strike id="txjt1"><ins id="txjt1"></ins></strike>

热点链接

学术活动

首页学术活动

The Open Webinar--Idempotent factorization of matrices over integral domains: an overview

主 讲 人 :Laura Cossu    博士

活动时间:04月09日19时00分    

地      点 :钉钉群

讲座内容:

A classical openproblem in ring theory is to characterize the integral domains R suchthat every singular matrix over R is a product of idempotent matrices. Theimportance of this problem is underlined by the inter-connections with otherbig unsolved questions: Classify integral domains whose general linear groupsare generated by the elementary matrices and those verifying “weaker” versionsof

the Euclideanalgorithm. In fact, over a Bézout domain, every singular matrix can be writtenas a product of  idempotent factors ifand only if every invertible matrix can be written as a product of elementary matrices. Moreover, this happens if and only if the domain admits a weak algorithm.

In our talk, we will give an overview ofclassical results and recent developments on the factorization of matrices intoidempotents. In particular, we will consider products of idempotent matricesover special classes of non-Euclidean principal ideal domains and over integraldomains that are not Bézout.


主讲人介绍:

Laura Cossu iscurrently a fixed-term lecturer in Algebra at the University of Padova (Italy).She graduated with a Master’s degree in Differential Geometry at the Universityof Cagliari and obtained a Ph.D. degree in Algebra from the University ofPadova on October 2017. During her Ph.D. and the subsequent post-doc in Padova,she has worked in the field of commutative ring theory. Her research

interests include matrix theory over integraldomains and the study of factorization and divisibility properties ofcommutative rings. She has published five articles on well-established internationaljournals. She has given courses of mathematics for the bachelor degree inBiology and of Algebra for the bachelor degree in Mathematics at the Universityof Padova.


发布时间:2020-04-09 09:34:37

版权所有河北师范大学    冀ICP备18011017号-3  

冀公网安备 13010802000630号


地址:河北省石家庄市南二环东路20号 邮编:050024 
意甲联赛下注 - 首页Welcome盗墓笔记有声小说 豆豆小说阅读网 我欲封天txt下载 完美世界txt全集下载 有声小说下载 古风小说 君子以泽 yy玄幻小说排行榜完本 盗墓笔记 欢乐颂第二季 旷世神医
<span id="txjt1"></span>
<strike id="txjt1"><i id="txjt1"><del id="txjt1"></del></i></strike>
<strike id="txjt1"><i id="txjt1"><cite id="txjt1"></cite></i></strike>
<strike id="txjt1"><i id="txjt1"><del id="txjt1"></del></i></strike><strike id="txjt1"></strike>
<span id="txjt1"><dl id="txjt1"></dl></span>
<strike id="txjt1"><dl id="txjt1"><cite id="txjt1"></cite></dl></strike>
<span id="txjt1"></span>
<ruby id="txjt1"><i id="txjt1"></i></ruby>
<strike id="txjt1"></strike>
<strike id="txjt1"></strike><strike id="txjt1"></strike><ruby id="txjt1"><i id="txjt1"></i></ruby><span id="txjt1"><dl id="txjt1"></dl></span>
<span id="txjt1"><dl id="txjt1"><del id="txjt1"></del></dl></span>
<span id="txjt1"><dl id="txjt1"><strike id="txjt1"></strike></dl></span><span id="txjt1"><video id="txjt1"><del id="txjt1"></del></video></span>
<strike id="txjt1"><ins id="txjt1"></ins></strike>